Improved stability and convergence with three factor learning

Bernd Porra & Tomas Kulviciusb & Florentin Wörgötterb,c

aDepartment of Electronics & Electrical Engineering, University of Glasgow, Glasgow, GT12 8LT, UK
bBernstein Center of Computational Neuroscience, University Göttingen, Germany
cComputational Neuroscience, Psychology, University of Stirling, FK9 4LR Stirling, UK

Abstract

Donald Hebb postulated that if neurons fire together they wire together. However, Hebbian learning is inherently unstable because synaptic weights will self amplify themselves: the more a synapse drives a postsynaptic cell the more the synaptic weight will grow. We present a new biologically realistic way of showing how to stabilise synaptic weights by introducing a third factor which switches learning on or off so that self amplification is minimised. The third factor can be identified by the activity of dopaminergic neurons in VTA which leads to a new interpretation of the dopamine signal which goes beyond the classical prediction error hypothesis.

Key words: Three factor learning, Hebbian learning, Reinforcement learning, Robotics, Closed loop

1 Introduction

Hebbian learning [1] is the most prominent paradigm in correlation based learning. However, Hebbian learning is inherently unstable because of its autocorrelation term: Briefly, a changing weight will alter the output which will lead to further weight change, and so on. In this study we present a novel learning rule which is an extension of our differential Hebbian learning rule

\textit{Email addresses:} b.porr@elec.gla.ac.uk (Bernd Porr), tomas@chaos.gwdg.de (Tomas Kulvicius), worgott@chaos.gwdg.de (Florentin Wörgötter).

Preprint submitted to Elsevier Science 5 May 2006
ISO-learning [2] which minimises the destabilising autocorrelation term by switching learning on when the autocorrelation term is minimal and which is performed by a third factor which acts like a neuromodulator [3]. Therefore we call this learning rule ISO3 learning. We will demonstrate the applicability of the rule with a simulated robot that learns to retrieve food disks.

Fig. 1. A) General form of the neural circuit. The inputs x_0, x_1, r are filtered by standard resonators (h_0, h_1, h_r which have frequency f and quality Q as parameters). u_0 and u_1 are summed at v with weights ρ_0 and ρ_1. The number of filters in the x_1 pathway can be extended to a filterbank with different resonators h_k and corresponding weights ρ_k which is indicated by the dotted lines. From the output of the filter h_r the derivative $\frac{d}{dt}$ is taken and then rectified (> 0). The symbol \otimes is a correlator and \sum is a summation node. B) Signals u_0, u_1 and their derivatives illustrate how learning works (see text for explanation). C) Comparing ISO and ISO3 learning rules. System parameters: $f_{h_0, h_1, h_r} = 0.1$ and damping parameter $Q = 0.51$ were used to filter inputs x_0, x_1 and relevance signal r. Learning rate was $\mu = 0.005$ for ISO learning rule and $\mu = 0.07$ for ISO-3 rule. Time difference between x_1 and x_0 was $T = 10$ (x_1 always precedes x_0).

2 Three factor learning

We are going to demonstrate using the open loop case how to minimise the destabilising autocorrelation term of Hebbian learning. Fig. 1A shows the basic components of the neural circuit. The learner consists of three inputs x_0, x_1 and r which are filtered by low pass filters: $u_0 = x_0 * h_0$, $u_1 = x_1 * h_1$ and $u_r = \Theta((r * h_r))$ where Θ is a threshold > 0 as depicted in Fig. 1. The circuit can easily be extended to a bank of filters with different resonators $h_j, j > 0$ and individual weights $\rho_j, j > 0$ to generate complex shaped responses. The learning rule for the weight change ρ_j is: $\rho_j' = \mu u_r u_j v'$, $j > 0$ where we have added a third factor u_r to the classical differential Hebbian learning [4,2].

The input signals x_0, x_1, r to our open loop circuit are delta pulses which trigger damped filter responses (see Fig. 1B). Weight change is driven by two factors: the cross-correlation between u_1 with the derivative u_0' and the auto-correlation of u_1 with its own derivative u_1'. However, auto- and the cross-correlations happen at different moments in time. Consequently we can switch
on learning when the autocorrelation is minimal and the cross correlation is maximal. This can be achieved by switching on the third factor \(u_r\) at the same time as the signal \(x_0\) is triggered. Fig. 1C shows the behaviour of ISO3 learning as compared to ISO-learning for a relatively high learning rate. To test the effect of the autocorrelation we switched off the signal \(x_0\) after step 4000. As shown in [2], ideally the weight should stabilise after \(x_0\) has been switched off. Instead, one can see clearly that ISO-learning contains an exponential instability, which leads to an upward bend. This is different for ISO3 learning which does not contain this instability. ISO3 learning is also stable when there is a bank of filters in the \(x_1\) pathway and/or when the filter functions are not orthogonal to each other (data not shown).

In summary ISO3 learning uses the fact that auto- and cross correlation happen at different moments in time. Consequently we can stabilise differential Hebbian learning by switching learning on at the moment when the autocorrelation term is minimal.

Fig. 2. The robot simulation. A) The robot has two pairs of sensors: It has two light sensors which detect the food blob only in their direct proximity. In addition it has two sound detectors which are able to “hear” the food source from a distance. B) The output \(v\) is the steering angle of the robot. The two light detectors (LD) establish the reflex reaction \((x_0)\). The sound detectors (SD) establish the predictive loop \((x_1)\). The weights \(\rho_1 \ldots \rho_N\) are variable and are changed either by ISO or ISO3 learning. The signal \(r\) is generated by a third light sensor and is triggered as soon as the robot enters the food blob. The robot also has a simple retraction mechanism when it collides with a wall (“retraction”) which is not used for learning. The output \(v\) is the steering angle of the robot. Filters are set to \(f_0 = 0.01\) for the reflex, \(f_j = 0.1 / j, j = 1 \ldots 5\) for the filter bank where \(Q = 0.51\). Reflex gain was \(\rho_0 = 0.005\). C) and D) plot the number of contacts for both learning rules needed for successful learning against the learning rate. In addition the number of failures against the learning rate are plotted.
3 Closed loop

The behavioural experiment of this section has two purposes: It will give the signals x_0, x_1 and r a behavioural meaning and it will demonstrate the superiority of ISO3 compared to ISO learning. Fig. 2A,B presents the task whereby a simulated robot has to learn to retrieve “food disks”. The reflex x_0 is established by two light detectors (LD) which draw the robot into the centre of the white disks (Fig. 2A1). Learning uses the sound detectors (SD, Fig. 2A2) which feed into x_1 to generate an anticipatory reaction towards the “food disk” [5]. The reflex reaction is established by the difference of two light dependent resistors which causes a steering reaction towards the white disk (Fig. 2B). Hence x_0 is equal to zero if both LDs are not stimulated or when they are stimulated at the same time which happens during a straight encounter with a disk. The latter situation occurs after successful learning. The reflex has a constant weight ρ_0 which always guarantees a stable reaction.

The predictive signal x_1 is generated by using two signals coming from the sound detectors (SD). The difference in the signals from the left and the right microphone is a measure of the azimuth of the sound source to the robot. We quantify successful and unsuccessful learning for increasing learning rates μ. The learning rates have been chosen in a way that proves in both cases that the contacts for successful learning are the same to make the failures comparable. Learning was considered successful when we received a sequence of five contacts with the disk at a sub-threshold value of $|x_0| < 1.1$. We recorded the actual number of contacts until this criterion was reached. The log-log plots of the number of contacts in Fig. 2C,D show that both rules follow a power law. The simulations demonstrate clearly that ISO3 learning is much more stable than the Hebbian ISO learning. ISO3 learning can therefore operate at more than ten times higher learning rates than ISO learning. In addition this experiment also shows how to connect the learner from Fig. 1 with a behaving agent: the sensor signals feed into x_0 and x_1 and generate the steering angle v of the robot. While the sensor signals x_0, x_1 and v will change substantially during learning, the r-signal, however, is always triggered when the robot enters the food disk and stabilises learning by its correct timing but not by its amplitude which always remains the same.

4 Discussion

The third factor of our work can be related to the dopaminergic neurons in the VTA which respond strongly to primary rewards [6]. The VTA in turn is driven by the lateral hypothalamus (LH) which is the primary nucleus which becomes active while eating food. The VTA could have the task to switch on learning
in a number of brain areas like the prefrontal cortex, the hippocampus, the nucleus accumbens and the striatum which could act as a global switch for learning. This means that the dopamine signal tells the target areas when to learn but not what to learn which is left to local processing in the target area. It is known that dopaminergic activity decreases at the primary reward and builds up at the location of the conditioned stimulus [6]. This behaviour can be re-interpreted: it helps to stabilise behaviour associated with the primary reward because learning is happening then at the moment of the secondary reward.

Reinforcement learning (RL) is usually implemented as an actor/critic architecture where the actor has the task of manoeuvring the agent to the reward while the critic is trying to predict the reward [7]. If the critic has been able to anticipate the reward the critic issues an error signal which in turn then modifies the actor which then eventually leads to goal directed behaviour towards the reward. In other words: the error signal actively decides which actions will be chosen. However, in ISO3 the signal u_r does not choose actions. ISO3 rather switches learning of an ISO-learner [2] on or off but does not force ISO learning towards a certain behaviour. Instead ISO learning decides by itself which behaviour will be learned.

References

